

NASA Advisory Council Exploration Committee

NAC Advisory Council, Public Meeting August 4, 2011

Mr. Richard Kohrs Chair NAC Exploration Committee

Exploration Committee Meeting

* Joint Meeting with Space Operations Committee

NASA Ames Research Center

August 2 - 3, 2011

NAC Exploration Committee Members

- Mr. Bohdan Bejmuk, Co-Chair
- Ms. Nancy Ann Budden
- Mr. Joseph Cuzzupoli (via telecon)
- Ms. Carolyn Griner
- Mr. Richard Kohrs, Chair
- Dr. John M. Logsdon (via telecon)
- Dr. David Longnecker
- Gen. Lester Lyles (absent)
- Mr. Richard Malow (absent)
- Dr. Bette Siegel, Executive Secretary
- Ms. Shawanda Robinson, Administrative Officer

NAC Exploration Committee - Agenda

- Task Group on Analysis Groups (TagAG) Final Report Joint Meeting with NAC Science Committee –
 - Dr. T. Jens Feeley/NAC Science Committee
- Space Operations & Exploration Systems Mission Directorates Merger
 Update
 - Ms. Lynn Cline/SOMD & Dr. Laurie Leshin, ESMD
- ISS Mars Analog Status Update
 - Mr. Charlie Stegemoeller/Johnson Space Center
- COTS/CRS & Commercial Crew Joint Meeting with NAC Commercial Space Committee
 - Mr. Michael T. Suffredini/JSC, Mr. Alan Lindenmoyer/JSC, Mr. Phil McAlister/ESMD
- Multipurpose Crew Vehicle/Space Launch System Update
 - Mr. Dan Dumbacher/ESMD

NAC Exploration Committee

Proposed Human Exploration and Operations Mission Directorate

Organizational Structure: Human Exploration and Operations Mission Directorate Chief Technologist Office of Communications _____ Associate Administrator Chief Scientist --Legislative & Intergovernmental Affairs-----Deputy Associate Administrator Deputy AA for Policy & Plans **Chief Engineer** International & Interagency Relations-----**Deputy AA for Program Strategy** Safety & Mission Assurance General Counsel - - - - -Chief Health & Medical Officer Strategic Analysis & Integration Mission Support Services **Resources Management** Space Launch Communication Services & Navigation Human Resources **Education & Public** Architecture studies and Outreach analysis Information Mission analysis **Technology** • Risk and requirements Mgt processes & coordination internal controls **Human Spaceflight** Commercial Space Life & Space Exploration ISS Advanced **Physical Sciences** Capabilities System O&M Spaceflight **Exploration** Shuttle **Systems** Core Capabilities Crew & Cargo Development Research & Development **Systems Applications** Transportation Commercial SLS (MAF, MOD AES • HRP, CHS MPCV SFCO, EVA) Services Crew • Robotic COTS • Fund. Space Bio • 21st Century • RPT precursor Physical Sciences Ground measurements **Systems** Acronym Key: AES = Advanced Exploration Systems CHS = Crew Health & Safety COTS = Commercial Orbital Transportation Services EVA = Extravehicular Activity MAF = Michoud Assembly Facility MPCV = Multi-Purpose Crew Vehicle ISS Nat'l Lab Mgt. MOD = Mission Operations Directorate O&M = Operations & Maintenance RPT = Rocket Propulsion Test SFCO = Space Flight Crew Operations SLS = Space Launch System

Figure 1

6

NAC Exploration Committee

SLS/MPCV Status Briefing

8

SLS / MPCV Status Briefing

Guidance Used to Develop MPCV and SLS Strategies

Current strategy for SLS/MPCV Based on architecture analysis and Authorization Act direction

Key Auth Act direction

- For SLS
 - The Administrator shall, to the extent practicable, <u>extend or modify existing vehicle</u> <u>development and associated contracts</u>
 - The initial capability of the core elements, without an upper stage, of lifting payloads weighing between 70 tons and 100 tons into low-Earth orbit (LEO)
 - The capability to lift the multipurpose crew vehicle
 - The capability to serve as a <u>backup system for supplying and supporting ISS</u> cargo requirements or crew delivery requirements not otherwise met by available commercial or partner-supplied vehicles

For MPCV

- The vehicle shall <u>continue to advance development of the human safety features</u>, <u>designs</u>, <u>and systems in the Orion project</u>
- The capability to provide an <u>alternative means of delivery of crew and cargo to the ISS</u>, in the event other vehicles, whether commercial vehicles or partner-supplied vehicles, are unable to perform that function.

MPCV Development - Key Decision

NASA will develop MPCV using the current Orion plan and contract

- Revisited architecture pertaining to MPCV requirements
- Considered whether New Acquisition for MPCV would enable more optimized integrated SLS/MPCV plan
- Considered potential for use of advanced technologies and changing approach to MPCV development in context of advances already integrated into Orion plan
- In context of requirements in NASA Authorization Act of 2010, NASA determined that it was practicable and appropriate to develop MPCV using the current Orion plan and contract

SLS Analysis Approach

Approach:

- Leverage three government Requirement Analysis Cycle (RAC) Teams to create and study different design concepts that leverage capability across American industry
- In parallel, solicit industry input and concepts via study contract input

Implementation:

- HEFT and FOM studies (Fall 2010) concluded without architecture decisions
- Government Requirements Analysis Cycle (RAC) Kick-off Nov 4
 - Three competing configurations with fourth team looking at cross-cutting affordability
 - Approaches to affordability addressed by all 3 teams
 - Common requirements (from HEFT), goals/threshold approach tradable
 - Incorporate incremental inputs from NASA Heavy Lift study contracts
 - Out brief to SLS Feb 16-18
- Contractor Heavy Lift Study Contracts—awarded November 2010
 - 13 Contractors, \$650K each, 6 month studies broad SOW ideas
 - Initial Out briefs Feb 22-24
 - Final Out briefs Apr 25-28

SLS Concepts

	LOX/H ₂ – Reference Vehicle Design	LOX/RP	Modular
Description	Hydrogen core configuration with solid strap-on boosters; multiple evolution paths	Large RP configuration (large diameter tanks) with multiple engine options, incl. NASA/USAF common engine	Modular RP configuration (smaller diameter tanks) with multiple engine options, incl. NASA/USAF common engine
Lift Capability	70 mT – 150 mT	100 mT – 172 mT	70 mT – 130 mT

Note: Images based on government design solutions from RAC teams

Current SLS Status

Current Technical Path for SLS

- Exploration-class, heavy-lift launch vehicle initially capable of lifting 70-100 metric tonnes (mT) to LEO, while ultimately being evolvable to a lifting capacity of 130mT
- Common use of liquid oxygen/liquid hydrogen propulsion for both the SLS core stage as well as the upper stage
- Continue to evaluate the multitude of existing liquid oxygen/liquid hydrogen engines in the United States fleet that include the RS-25, RS-68, and J-2X
- Still assessing best approach for strap-on boosters
- Looking at feasibility of first uncrewed test flight of 70-100 mT configuration in late 2017 (based on funding levels from FY2012 budget request) followed by crewed flight in early 2020s
- Evaluating procurement strategies; including competition options and scope and applicability of current contracts
- Assessing all trades against cost estimates, affordability measures, schedule estimates, and adherence to the NASA Authorization Act of 2010.

NAC Exploration Committee - Recommendations

No Recommendations